A two-stage method for MUAP classification based on EMG decomposition

dc.contributor.authorKatsis, C. D.en
dc.contributor.authorExarchos, T. P.en
dc.contributor.authorPapaloukas, C.en
dc.contributor.authorGoletsis, Y.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorSarmas, I.en
dc.date.accessioned2015-11-24T17:37:46Z
dc.date.available2015-11-24T17:37:46Z
dc.identifier.issn0010-4825-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14402
dc.rightsDefault Licence-
dc.subjectquantitative electromyographyen
dc.subjectelectromyogram decompositionen
dc.subjectmuap detection and classificationen
dc.subjectradial basis function networken
dc.subjectdecision treesen
dc.subjectunit action-potentialsen
dc.subjectelectromyographic signalsen
dc.subjectautomatic decompositionen
dc.subjectalgorithmen
dc.titleA two-stage method for MUAP classification based on EMG decompositionen
heal.abstractA method for the extraction and classification of individual motor unit action potentials (MUAPs) from needle electromyographic signals is presented. The proposed method automatically decomposes MUAPs and classifies them into normal, neuropathic or myopathic using a two-stage feature-based classifier. The method consists of four steps: (i) preprocessing of EMG recordings, (ii) MUAP clustering and detection of superimposed MUAPs, (iii) feature extraction and (iv) MUAP classification using a two-stage classifier. The proposed method employs Radial Basis Function Artificial Neural Networks and decision trees. It requires minimal use of tuned parameters and is able to provide interpretation for the classification decisions. The approach has been validated on real EMG recordings and an annotated collection of MUAPs. The success rate for MUAP clustering is 96%, while the accuracy for MUAP classification is about 89%. (C) 2006 Elsevier Ltd. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.compbiomed.2006.11.010-
heal.identifier.secondary<Go to ISI>://000249489700003-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0010482506002101/1-s2.0-S0010482506002101-main.pdf?_tid=9e58e418137a4d8549288784e8d50017&acdnat=1339758011_eac076cbc7bb62a878578591552fe83f-
heal.journalNameComput Biol Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: