On the number of spanning trees of K-n(m) +/- G graphs

dc.contributor.authorNikolopoulos, S. D.en
dc.contributor.authorPapadopoulos, C.en
dc.date.accessioned2015-11-24T17:26:47Z
dc.date.available2015-11-24T17:26:47Z
dc.identifier.issn1365-8050-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13255
dc.rightsDefault Licence-
dc.subjectkirchhoff matrix tree theoremen
dc.subjectcomplement spanning tree matrixen
dc.subjectspanning treesen
dc.subjectk-n-complementsen
dc.subjectmultigraphsen
dc.subjectchebyshev polynomialsen
dc.subjectformulasen
dc.subjectcirculanten
dc.titleOn the number of spanning trees of K-n(m) +/- G graphsen
heal.abstractThe K-n-complement of a graph G, denoted by K-n - G, is defined as the graph obtained from the complete graph Kn by removing a set of edges that span G; if G has n vertices, then K n - G coincides with the complement G of the graph G. In this paper we extend the previous notion and derive determinant based formulas for the number of spanning trees of graphs of the form K-n(m) +/- G, where K-n(m) is the complete multigraph on n vertices with exactly m edges joining every pair of vertices and G is a multigraph spanned by a set of edges of K m n; the graph K-n(m) + G (resp. K-n(m) - G) is obtained from K-n(m) by adding (resp. removing) the edges of G. Moreover, we derive determinant based formulas for graphs that result from K m n by adding and removing edges of multigraphs spanned by sets of edges of the graph K-n(m). We also prove closed formulas for the number of spanning tree of graphs of the form K-n(m) +/- G, where G is (i) a complete multipartite graph, and (ii) a multi-star graph. Our results generalize previous results and extend the family of graphs admitting formulas for the number of their spanning trees.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000202967200003-
heal.journalNameDiscrete Mathematics and Theoretical Computer Scienceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.publisherDiscrete Mathematics &amp; Theoretical Computer Scienceen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: