Bayesian restoration using a new nonstationary edge-preserving image prior

dc.contributor.authorChantas, G. K.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorLikas, A. C.en
dc.date.accessioned2015-11-24T17:01:14Z
dc.date.available2015-11-24T17:01:14Z
dc.identifier.issn1057-7149-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10894
dc.rightsDefault Licence-
dc.subjectpartially known blursen
dc.subjecthyperparameter estimationen
dc.subjectregularizationen
dc.titleBayesian restoration using a new nonstationary edge-preserving image prioren
heal.abstractIn this paper, we propose a class of image restoration algorithms based on the Bayesian approach and a new hierarchical spatially adaptive image prior. The proposed prior has the following two desirable features. First, it models the local image discontinuities in different directions with a model which is continuous valued. Thus, it preserves edges and generalizes the on/off (binary) line process idea used in previous image priors within the context of Markov random fields (MRFs). Second, it is Gaussian in nature and provides estimates that are easy to compute. Using this new hierarchical prior, two restoration algorithms are derived. The first is based on the maximum a posteriori principle and the second on the Bayesian methodology. Numerical experiments are presented that compare the proposed algorithms among themselves and with previous stationary and non stationary MRF-based with line process algorithms. These experiments demonstrate the advantages of the proposed prior.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tip.2006.877520-
heal.journalNameIeee Transactions on Image Processingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: