A variational approach for Bayesian blind image deconvolution

dc.contributor.authorLikas, A. C.en
dc.contributor.authorGalatsanos, N. P.en
dc.date.accessioned2015-11-24T17:00:45Z
dc.date.available2015-11-24T17:00:45Z
dc.identifier.issn1053-587X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10807
dc.rightsDefault Licence-
dc.subjectbayesian parameter estimationen
dc.subjectblind deconvolutionen
dc.subjectgraphical modelsen
dc.subjectimage restorationen
dc.subjectvariational methodsen
dc.subjectexpectation-maximization algorithmen
dc.subjectpartially known blursen
dc.subjectmaximum-likelihooden
dc.subjectem algorithmen
dc.subjectrestorationen
dc.subjectidentificationen
dc.subjectregularizationen
dc.titleA variational approach for Bayesian blind image deconvolutionen
heal.abstractIn this paper, the blind image deconvolution (BID) problem is addressed using the Bayesian framework. In order to solve for the proposed Bayesian model, we present a new methodology based on a variational approximation, which has been recently introduced for several machine learning problems, and can be viewed as a generalization of the expectation maximization (EM) algorithm. This methodology reaps all the benefits of a "full Bayesian model" while bypassing some of its difficulties. We present three algorithms that solve the proposed Bayesian problem in closed form and can be implemented in the discrete Fourier domain. This makes them very cost effective even for very large images. We demonstrate with numerical experiments that these algorithms yield promising improvements as compared to previous BID algorithms. Furthermore, the proposed methodology is quite general with potential application to other Bayesian models for this and other imaging problems.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tsp.2004.831119-
heal.journalNameIeee Transactions on Signal Processingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: