Parallel Recombinative Reinforcement Learning a genetic approach
Φόρτωση...
Ημερομηνία
Συγγραφείς
Likas, A
Blekas, K.
Stafylopatis, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Journal of Intelligent Systems
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
A technique is presented that is suitable for function optimization in high-dimensional binary domains. The method allows an efficient parallel implementation and is based on the combination of genetic algorithms and reinforcement learning schemes. More specifically, a population of probability vectors is considered, each member corresponding to a reinforcement learning optimizer. Each probability vector represents the adaptable parameters of a team of stochastic units whose binary outputs provide a point of the function state space. At each step of the proposed technique the population members are updated according to a reinforcement learning rule and then recombined in a manner analogous to traditional genetic algorithm operation. Special care is devoted to ensuring the desirable properties of sustained exploration capability and sustained population diversity. The method has been tested on the graph partitioning problem in comparison with other techniques under two different types of fitness evaluation yielding very promising results.
Περιγραφή
Λέξεις-κλειδιά
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής