Enhancement of the classification of multichannel chromosome images using support vector machines

dc.contributor.authorKarvelis, P. S.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorGeorgiou, I.en
dc.contributor.authorSakaloglou, P.en
dc.date.accessioned2015-11-24T19:19:09Z
dc.date.available2015-11-24T19:19:09Z
dc.identifier.issn1557-170X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/21937
dc.rightsDefault Licence-
dc.subjectAlgorithmsen
dc.subjectArtificial Intelligenceen
dc.subjectBayes Theoremen
dc.subjectChromosome Mapping/*instrumentation/methodsen
dc.subjectChromosomes/*ultrastructureen
dc.subjectDiagnostic Imaging/instrumentation/methodsen
dc.subjectHumansen
dc.subjectImage Enhancement/methodsen
dc.subjectImage Interpretation, Computer-Assisted/methodsen
dc.subjectImage Processing, Computer-Assisted/methodsen
dc.subjectIn Situ Hybridization, Fluorescence/*instrumentation/methodsen
dc.subjectMicroscopy, Fluorescence/methodsen
dc.subjectModels, Statisticalen
dc.subjectPattern Recognition, Automated/classification/methodsen
dc.titleEnhancement of the classification of multichannel chromosome images using support vector machinesen
heal.abstractColor chromosome classification (karyotyping) allows simultaneous analysis of numerical and structural chromosome abnormalities. The success of the technique largely depends on the accuracy of pixel classification. In this paper we present a method for multichannel chromosome image classification based on support vector machines. First, the image is segmented using a multichannel watershed segmentation method. Classification of the pixels of the segmented regions using support vector machines is then employed. The method has been tested on images from normal cells, showing the improvement in classification accuracy by 10.16% when compared to a Bayesian classifier. The increased classification improves the reliability of the M-FISH imaging technique in identifying subtle and cryptic chromosomal abnormalities for cancer diagnosis and genetic disorders research.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1109/IEMBS.2009.5333757-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/19964307-
heal.journalNameConf Proc IEEE Eng Med Biol Socen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: