Coupling atomistic and continuum length scales in heteroepitaxial systems: Multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si3N4 nanopixels

dc.contributor.authorLidorikis, E.en
dc.contributor.authorBachlechner, M.en
dc.contributor.authorKalia, R. K.en
dc.contributor.authorNakano, A.en
dc.contributor.authorVashishta, P.en
dc.date.accessioned2015-11-24T17:32:51Z
dc.date.available2015-11-24T17:32:51Z
dc.identifier.issn1098-0121-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13787
dc.rightsDefault Licence-
dc.subjectcritical layer thicknessen
dc.subjectpyramidal quantum dotsen
dc.subjectmisfit dislocationsen
dc.subjectsilicon-nitrideen
dc.subjectelectronic-structureen
dc.subjectinas/gaas(111)a heteroepitaxyen
dc.subjectsi(111)/si3n4(001) interfaceen
dc.subjectsemiconductor heteroepitaxyen
dc.subjectepitaxial multilayersen
dc.subjectsurface-morphologyen
dc.titleCoupling atomistic and continuum length scales in heteroepitaxial systems: Multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si3N4 nanopixelsen
heal.abstractA hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in lattice-mismatched Si/Si3N4 nanopixels on a Si(111) substrate. We couple the molecular-dynamics (MD) and finite-element simulation approaches to provide an atomistic description near the interface and a continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations. We find that strain relaxation in Si/Si3N4 nanopixels may occur through the formation of a network of interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation speed of about similar to 2.5x10(3) m/s. The effects of temperature, nanopixel architecture, and film structure on strain relaxation are also investigated. We find: (i) elevated temperature increases the interfacial domain nucleation rates; (ii) a thin compliant Si layer between the film and the substrate plays a beneficial role in partially suppressing strain relaxation; and (iii) additional control over the interface morphology may be achieved by varying the film structure.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1103/Physrevb.72.115338-
heal.identifier.secondary<Go to ISI>://000232229100119-
heal.journalNamePhysical Review Ben
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2005-
heal.publisherAmerican Physical Societyen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Lidorikis-2005-Coupling atomistic and continuum.pdf
Μέγεθος:
2.74 MB
Μορφότυπο:
Adobe Portable Document Format

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: