Probabilistic multiple face detection and tracking using entropy measures
Φόρτωση...
Ημερομηνία
Συγγραφείς
Loutas, E.
Pitas, I.
Nikou, C.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Circuits and Systems for Video Technology, IEEE Transactions on
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
A joint probabilistic face detection and tracking algorithm, combining likelihood estimation and a prior probability, is proposed. The likelihood estimation scheme is based on the statistical training of sets of automatically generated feature points and a mutual information tracking cue, while the prior probability estimation is based on a Gaussian temporal model. The likelihood estimation process is the core of a multiple face detection scheme used to initialize the tracking process. The resulting system has been tested on real image sequences and is robust to significant partial occlusion and illumination changes.
Περιγραφή
Λέξεις-κλειδιά
Gaussian processes, face recognition, image sequences, object detection, optical tracking, parameter estimation, probability, Gaussian temporal model, entropy measures, feature point sets, illumination changes, likelihood estimation, multiple face detection, multiple face tracking, partial occlusion, prior probability estimation, probabilistic face detection, probabilistic face tracking, statistical training
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής