A posteriori error estimates for the Crank-Nicolson method for parabolic equations
Φόρτωση...
Ημερομηνία
Συγγραφείς
Akrivis, G.
Makridakis, C.
Nochetto, R. H.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Mathematics of Computation
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We derive optimal order a posteriori error estimates for time discretizations by both the Crank-Nicolson and the Crank-Nicolson-Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second-order Crank-Nicolson reconstructions of the piecewise linear approximate solutions. These functions satisfy two fundamental properties: (i) they are explicitly computable and thus their difference to the numerical solution is controlled a posteriori, and (ii) they lead to optimal order residuals as well as to appropriate pointwise representations of the error equation of the same form as the underlying evolution equation. The resulting estimators are shown to be of optimal order by deriving upper and lower bounds for them depending only on the discretization parameters and the data of our problem. As a consequence we provide alternative proofs for known a priori rates of convergence for the Crank-Nicolson method.
Περιγραφή
Λέξεις-κλειδιά
parabolic equations, crank-nicolson method, crank-nicolson galerkin method, crank-nicolson reconstruction, crank-nicolson-galerkin reconstruction, a posteriori error analysis, finite-element methods, schrodinger-equation, heat-equation, time, discretizations, space
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής