Statistical inference for location and scale of elliptically contoured models with monotone missing data

dc.contributor.authorBatsidis, A.en
dc.contributor.authorZografos, K.en
dc.date.accessioned2015-11-24T17:21:13Z
dc.date.available2015-11-24T17:21:13Z
dc.identifier.issn0378-3758-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12436
dc.rightsDefault Licence-
dc.subjectmonotone missing dataen
dc.subjectelliptically contoured distributionsen
dc.subjectestimationen
dc.subjecttesting hypothesesen
dc.subjectlack of correlationen
dc.subjectmultivariate t-distributionen
dc.subjectpearson type ii and vii distributionsen
dc.subjectmultivariate normal-distributionen
dc.subjectconditional-independence modelsen
dc.subjectmaximum-likelihood-estimationen
dc.subjectnormal-mean vectoren
dc.subjectincomplete dataen
dc.subjectsampleen
dc.titleStatistical inference for location and scale of elliptically contoured models with monotone missing dataen
heal.abstractIn this paper statistical inference is developed for the estimation and testing problems of the location and scale parameters of the elliptically contoured family of distributions. The data matrix is of a monotone missing pattern. The analytic form of the maximum likelihood estimators of location and scale are derived, and based on them, the likelihood ratio test statistics are obtained for testing the following: (i) the location and scale parameters are, separately, equal to a specified vector and matrix, (ii) the location and scale parameters are, simultaneously, equal to a specified vector and matrix, and (iii) the hypothesis of lack of correlation between sets of variates that jointly described by the elliptically contoured family of distributions. The test of sphericity is also derived in the particular case of the multivariate normal distribution. The asymptotic null distributions of the resulting test statistics are derived for k = 2, as well as, for k > 2 steps of monotone missing data. The results are illustratively applied in the Appendix A, to specific elliptically contoured models like the multivariate t-distribution. The results are also illustrated using simulated data from a multivariate t-distribution. (c) 2004 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.jspi.2004.10.021-
heal.identifier.secondary<Go to ISI>://000237678300010-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0378375804004252/1-s2.0-S0378375804004252-main.pdf?_tid=c4fce3853bee523018e4a3418f35f71c&acdnat=1339398773_d079630299b8ad4c877a71cf8e9ccde9-
heal.journalNameJournal of Statistical Planning and Inferenceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: