Registering sets of points using Bayesian regression
Φόρτωση...
Ημερομηνία
Συγγραφείς
Gerogiannis, Demetrios
Nikou, Christophoros
Likas, Aristidis
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Neurocomputing
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
This work addresses the problem of non-rigid registration between two 2D or 3D points sets as a novel application of Relevance Vector Machines (RVM). An iterative framework is proposed which consists of two steps: at first, correspondences between distinct points are estimated by the Hungarian algorithm and then a regression procedure based on a Bayesian linear model (RVM) maps the two sets of points. By these means, a large variety of transformation is captured without imposing any prior knowledge on the form of the point sets. The proposed algorithm provides a smooth transformation even if the correspondence between the points in the two sets contains erroneous matches. The algorithm was successfully evaluated on sets of points with varying difficulty and favorably compared with state-of-the-art methods in cases of noise.
Περιγραφή
Λέξεις-κλειδιά
Registration of sets of points, Relevance vector machine (RVM), Hungarian algorithm
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής