Registering sets of points using Bayesian regression

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Gerogiannis, Demetrios
Nikou, Christophoros
Likas, Aristidis

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Neurocomputing

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

This work addresses the problem of non-rigid registration between two 2D or 3D points sets as a novel application of Relevance Vector Machines (RVM). An iterative framework is proposed which consists of two steps: at first, correspondences between distinct points are estimated by the Hungarian algorithm and then a regression procedure based on a Bayesian linear model (RVM) maps the two sets of points. By these means, a large variety of transformation is captured without imposing any prior knowledge on the form of the point sets. The proposed algorithm provides a smooth transformation even if the correspondence between the points in the two sets contains erroneous matches. The algorithm was successfully evaluated on sets of points with varying difficulty and favorably compared with state-of-the-art methods in cases of noise.

Περιγραφή

Λέξεις-κλειδιά

Registration of sets of points, Relevance vector machine (RVM), Hungarian algorithm

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced