Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics
dc.contributor.author | Piperagkas, G. S. | en |
dc.contributor.author | Konstantaras, I. | en |
dc.contributor.author | Skouri, K. | en |
dc.contributor.author | Parsopoulos, K. E. | en |
dc.date.accessioned | 2015-11-24T17:28:05Z | |
dc.date.available | 2015-11-24T17:28:05Z | |
dc.identifier.issn | 0305-0548 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13501 | |
dc.rights | Default Licence | - |
dc.subject | dynamic lot-size problem | en |
dc.subject | wagner-whitin algorithm | en |
dc.subject | particle swarm optimization | en |
dc.subject | differential evolution | en |
dc.subject | harmony search | en |
dc.subject | particle swarm optimization | en |
dc.subject | flowshop scheduling problem | en |
dc.subject | harmony search algorithm | en |
dc.subject | differential evolution | en |
dc.subject | models | en |
dc.subject | convergence | en |
dc.subject | system | en |
dc.subject | time | en |
dc.title | Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics | en |
heal.abstract | We investigate the dynamic lot-size problem under stochastic and non-stationary demand over the planning horizon. The problem is tackled by using three popular heuristic methods from the fields of evolutionary computation and swarm intelligence, namely particle swarm optimization, differential evolution and harmony search. To the best of the authors' knowledge, this is the first investigation of the specific problem with approaches of this type. The algorithms are properly manipulated to fit the requirements of the problem. Their performance, in terms of run-time and solution accuracy, is investigated on test cases previously used in relevant works. Specifically, the lot-size problem with normally distributed demand is considered for different planning horizons, varying from 12 up to 48 periods. The obtained results are analyzed, providing evidence on the efficiency of the employed approaches as promising alternatives to the established Wagner-Whitin algorithm, as well as hints on their proper configuration. (C) 2011 Elsevier Ltd. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.cor.2011.09.004 | - |
heal.identifier.secondary | <Go to ISI>://000298532900024 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0305054811002656/1-s2.0-S0305054811002656-main.pdf?_tid=f4da6850ba70e63804e4309038d89a43&acdnat=1339055719_17f9098e3237787e6492c356932968e4 | - |
heal.journalName | Computers & Operations Research | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2012 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: