Forecasting hourly PM(10) concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management

dc.contributor.authorPaschalidou, A. K.en
dc.contributor.authorKarakitsios, S.en
dc.contributor.authorKleanthous, S.en
dc.contributor.authorKassomenos, P. A.en
dc.date.accessioned2015-11-24T18:28:06Z
dc.date.available2015-11-24T18:28:06Z
dc.identifier.issn0944-1344-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/16121
dc.rightsDefault Licence-
dc.subjectneural networksen
dc.subjectprincipal component regression analysisen
dc.subjectforecastingen
dc.subjecthourly pm(10) concentrationsen
dc.subjectsaharan dust eventsen
dc.subjectpredictionen
dc.subjectairen
dc.subjectathensen
dc.subjectparametersen
dc.subjectaverageen
dc.subjectgreeceen
dc.subjectareaen
dc.subjectno2en
dc.titleForecasting hourly PM(10) concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental managementen
heal.abstractIn the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM(10) concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R (2) values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R (2) values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s11356-010-0375-2-
heal.identifier.secondary<Go to ISI>://000286762200017-
heal.identifier.secondaryhttp://www.springerlink.com/content/26tn546381hmj1g6/fulltext.pdf-
heal.journalNameEnvironmental Science and Pollution Researchen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2011-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: