Velocity dispersion of guided waves propagating in a free gradient elastic plate: Application to cortical bone

dc.contributor.authorVavva, M. G.en
dc.contributor.authorProtopappas, V. C.en
dc.contributor.authorGergidis, L. N.en
dc.contributor.authorCharalambopoulos, A.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorPolyzos, D.en
dc.date.accessioned2015-11-24T17:31:58Z
dc.date.available2015-11-24T17:31:58Z
dc.identifier.issn0001-4966-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13645
dc.rightsDefault Licence-
dc.subjectultrasonic axial transmissionen
dc.subjecthealing long bonesen
dc.subjectsurface-energyen
dc.subjectcompact-boneen
dc.subjectin-vitroen
dc.subjectnonlocal elasticityen
dc.subjectcellular materialsen
dc.subjectcontinuum-theoriesen
dc.subjectlinear elasticityen
dc.subjectlongitudinal-waveen
dc.titleVelocity dispersion of guided waves propagating in a free gradient elastic plate: Application to cortical boneen
heal.abstractThe classical linear theory of elasticity has been largely used for the ultrasonic characterization of bone. However, linear elasticity cannot adequately describe the mechanical behavior of materials with microstructure in which the stress state has to be defined in a non-local manner. In this study, the simplest form of gradient theory (Mindlin Form-II) is used to theoretically determine the velocity dispersion curves of guided modes propagating in isotropic bone-mimicking plates. Two additional terms are included in the constitutive equations representing the characteristic length in bone: (a) the gradient coefficient g, introduced in the strain energy, and (b) the micro-inertia term h, in the kinetic energy. The plate was assumed free of stresses and of double stresses. Two cases were studied for the characteristic length: h = 10(-4) m and h = 10(-5) m. For each case, three subcases for g were assumed, namely, g > h, g > h, and g=h. The values of g and h were of the order of the osteons size. The velocity dispersion curves of guided waves were numerically obtained and compared with the Lamb modes. The results indicate that when g was not equal to h (i.e., g not equal h), microstructure affects mode dispersion by inducing both material and geometrical dispersion. In conclusion, gradient elasticity can provide supplementary information to better understand guided waves in bones. (c) 2009 Acoustical Society of America. [DOI: 10.1121/1.3110203]en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1121/1.3110203-
heal.identifier.secondary<Go to ISI>://000265884700062-
heal.identifier.secondaryhttp://link.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JASMAN000125000005003414000001-
heal.journalNameJournal of the Acoustical Society of Americaen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.publisherAcoustical Society of Americaen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: