Piecewise neural networks for function approximation, cast in a form suitable for parallel computation

dc.contributor.authorTsoulos, I. G.en
dc.contributor.authorLagaris, I. E.en
dc.contributor.authorLikas, A. C.en
dc.date.accessioned2015-11-24T17:00:19Z
dc.date.available2015-11-24T17:00:19Z
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10747
dc.rightsDefault Licence-
dc.subjectoptimizationen
dc.titlePiecewise neural networks for function approximation, cast in a form suitable for parallel computationen
heal.abstractWe present a technique for function approximation in a partitioned domain. In each of the partitions a form containing a Neural Network is utilized with parameterized boundary conditions. This parameterization renders feasible the parallelization of the computation. Conditions of continuity across the partitions are studied for the function itself and for a number of its derivatives. A comparison is made with traditional methods and the results axe reported.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameMethods and Applications of Artificial Intelligenceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: