Μελέτη ανάδυσης μαγνητικής ροής στην ηλιακή ατμόσφαιρα με χρήση αριθμητικών προσομοιώσεων

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Καραντάνης, Ευάγγελος
Karantanis, Evangelos

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Φυσικής
University of Ioannina. School of Sciences. Department of Physics

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

The subject of this master thesis is the study of magnetic flux emergence in the solar atmosphere using numerical simulations. It is well known that various phenomena in the Sun such as solar flares, jets, coronal mass ejections (CME), are linked to magnetic structures beneath the photosphere. These structures transport magnetic flux from the deep convection zone to the photosphere and then expand in the corona. In this thesis we focus on the interaction between the emerging magnetic field and the external ambient field leading to standard jet formation and more intense eruptions known as blowout jets. To quantify the amount of energy and magnetic field transported into the solar atmosphere we conduct three-dimensional (3D), resistive magnetohydrodynamic (MHD) numerical simulations using Lare3D code. This allows us to model the emergence process and the eruptive phenomena produced in our simulations. The magnetic flux is concentrated along rigid structures located in the convection zone and we examine different topologies of those structures to understand how their characteristics affect the amount of energy that can emerge and produce transient phenomena. Given the importance of the twist of the field lines in a flux tube, we compare cases with higher (α = 0.4) and lower (α = 0.1) twists. For the high twist case (α = 0.4) we find that both tubes produce multiple jets and blowout jets. The horizontal tube releases a significant amount of energy in the corona as compared to the toroidal tube however the toroidal tube maintains an eruptive behavior for longer time albeit with less intensity. We find that the reasons behind these behavior is that the toroidal tube maintains and increases the amount of axial flux located at the upper atmosphere whereas the horizontal tube after the first two intense eruptions can no longer create and maintain axial flux which is an important factor since it is linked to the twisted magnetic field lines that lead to eruptions. For the less twisted case (α = 0.1) the toroidal tube cannot produce any eruptions given that the field lines emergence with almost no twist and there is no further shearing motion. The horizontal tube, due to its undulation produces one eruption. Overall, the geometrical structure of real magnetic flux tubes in the Sun is not well established therefore numerical simulations can help identify these structures by comparing them with observational data from eruptive phenomena on the Sun.

Περιγραφή

Λέξεις-κλειδιά

Ήλιος, Μαγνητοϋδροδυναμική, Ανάδυση μαγνητικής ροής, Sun, Magnetohydrodynamics, Magnetic flux emergence

Θεματική κατηγορία

Ηλιακή φυσική, Solar physics

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Φυσικής
University of Ioannina. School of Sciences. Department of Physics

Όνομα επιβλέποντος

Αρχοντής, Βασίλης

Εξεταστική επιτροπή

Αρχοντής, Βασίλης
Νίντος, Αλέξανδρος
Πατσουράκος, Σπύρος

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών
University of Ioannina. School of Sciences

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

83

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced