Systematics of perturbative semiclassical quantum defect expansions probed by RKR-QDT and a Fisher-information-based criterion
dc.contributor.author | Cohen, S. | en |
dc.date.accessioned | 2015-11-24T18:34:25Z | |
dc.date.available | 2015-11-24T18:34:25Z | |
dc.identifier.issn | 1434-6060 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/16934 | |
dc.rights | Default Licence | - |
dc.subject | atomic model potentials | en |
dc.subject | uncertainty relations | en |
dc.subject | wkb approximation | en |
dc.subject | rydberg states | en |
dc.subject | alkali-metal | en |
dc.subject | polarizabilities | en |
dc.subject | oscillator | en |
dc.subject | entropy | en |
dc.subject | plane | en |
dc.title | Systematics of perturbative semiclassical quantum defect expansions probed by RKR-QDT and a Fisher-information-based criterion | en |
heal.abstract | The systematics of perturbative semiclassical quantum defect expansions corresponding to a hydrogenic potential plus a perturbing term of the form -A/2r(kappa), kappa >= 2, are studied as a function of expansion order N. Towards this task the expansions mu(N) are first used as input for constructing associated N-dependent atomic RKR-QDT potential curves. Subsequently the coordinate Fisher information for the energy levels supported by those curves as well as its rate e with respect to N is semiclassically computed. Then, the plot of relative quantum defect error between successive orders, delta mu(N+1,N), with respect to epsilon serves as convergence indicator for both approximate potentials and quantum defects. For a given. and when the quantum defect expansion proves to be of limited accuracy the plot reveals an A- and N-dependent scatter of points and "saturation" (the relative error remains almost constant with respect to epsilon). More importantly, when epsilon is equal to or lower than the value of epsilon (N = 1) for which pi(mu 1) <= 1/2 the relative error exhibits a kappa-, A- and N-independent power-law dependence, delta mu(N+1,N) proportional to epsilon(m), clearly distinguishing the N = 1 order (m = 1/2) from all other N > 1 orders (m = 1). These power-laws may be employed for setting-up confidence level bounds on perturbative expansions. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1140/epjd/e2009-00236-0 | - |
heal.identifier.secondary | <Go to ISI>://000269864400009 | - |
heal.identifier.secondary | http://www.springerlink.com/content/l12m1w74104v4469/fulltext.pdf | - |
heal.journalName | European Physical Journal D | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2009 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: