A class-adaptive spatially variant mixture model for image segmentation

dc.contributor.authorNikou, C.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorLikas, A. C.en
dc.date.accessioned2015-11-24T17:01:35Z
dc.date.available2015-11-24T17:01:35Z
dc.identifier.issn1057-7149-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10946
dc.rightsDefault Licence-
dc.subjectclustering-based image segmentationen
dc.subjectexpectation-maximization (em) algorithmen
dc.subjectgauss-markov random fielden
dc.subjectgaussian mixture modelen
dc.subjectmaximum a posteriori (map) estimationen
dc.subjectspatial smoothness constraintsen
dc.subjectgaussian mixtureen
dc.subjectem algorithmen
dc.subjectclassificationen
dc.subjectfiltersen
dc.titleA class-adaptive spatially variant mixture model for image segmentationen
heal.abstractWe propose a new approach for image segmentation based on a hierarchical and spatially variant mixture model. According to this model, the pixel labels are random variables and a smoothness prior is imposed on them. The main novelty of this work is a new family of smoothness priors for the label probabilities in spatially variant mixture models. These Gauss-Markov random field-based priors allow all their parameters to be estimated in closed form via the maximum a posteriori (MAP) estimation using the expectation-maximization methodology. Thus, it is possible to introduce priors with multiple parameters that adapt to different aspects of the data. Numerical experiments are presented where the proposed MAP algorithms were tested in various image segmentation scenarios. These experiments demonstrate that the proposed segmentation scheme compares favorably to both standard and previous spatially constrained mixture model-based segmentation.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tip.2007.891771-
heal.journalNameIeee Transactions on Image Processingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: