Ml Estimation in the Poisson Binomial-Distribution with Grouped Data Via the Em Algorithm

dc.contributor.authorAdamidis, K.en
dc.contributor.authorLoukas, S.en
dc.date.accessioned2015-11-24T17:25:26Z
dc.date.available2015-11-24T17:25:26Z
dc.identifier.issn0094-9655-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13042
dc.rightsDefault Licence-
dc.subjectem algorithmen
dc.subjectgrouped dataen
dc.subjectneyman type a distributionen
dc.subjectpoisson binomial distributionen
dc.titleMl Estimation in the Poisson Binomial-Distribution with Grouped Data Via the Em Algorithmen
heal.abstractThe maximum likelihood estimation of parameters of the Poisson binomial distribution, based on a sample with exact and grouped observations, is considered by applying the EM algorithm (Dempster et al., 1977). The results of Louis (1982) are used in obtaining the observed information matrix and accelerating the convergence of the EM algorithm substantially. The maximum likelihood estimation from samples consisting entirely of complete (Sprott, 1958) or grouped observations are treated as special cases of the estimation problem mentioned above. A brief account is given for the implementation of the EM algorithm when the sampling distribution is the Neyman Type A since the latter is a limiting form of the Poisson binomial. Numerical examples based on real data are included.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://A1993QM82000003-
heal.journalNameJournal of Statistical Computation and Simulationen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1993-
heal.publisherTaylor & Francisen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: