A spatially constrained mixture model for image segmentation

dc.contributor.authorBlekas, K.en
dc.contributor.authorLikas, A.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorLagaris, I. E.en
dc.date.accessioned2015-11-24T17:00:57Z
dc.date.available2015-11-24T17:00:57Z
dc.identifier.issn1045-9227-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10843
dc.rightsDefault Licence-
dc.subjectcovex quadratic programming (qp)en
dc.subjectexpectation-maximization (em)en
dc.subjectgaussian mixture model (gmm)en
dc.subjectimage segmentationen
dc.subjectmarkov random field (mrf)en
dc.subjectem algorithmen
dc.titleA spatially constrained mixture model for image segmentationen
heal.abstractGaussian mixture models (GMMs) constitute a well-known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation-maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tnn.2004.841773-
heal.journalNameIeee Transactions on Neural Networksen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2005-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: