On the number of spanning trees of multi-star related graphs
dc.contributor.author | Nikolopoulos, S. D. | en |
dc.contributor.author | Rondogiannis, P. | en |
dc.date.accessioned | 2015-11-24T17:03:02Z | |
dc.date.available | 2015-11-24T17:03:02Z | |
dc.identifier.issn | 0020-0190 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11123 | |
dc.rights | Default Licence | - |
dc.subject | spanning trees | en |
dc.subject | multi-star graphs | en |
dc.subject | complement spanning tree matrix theorem | en |
dc.subject | combinatorial problems | en |
dc.subject | interconnection networks | en |
dc.title | On the number of spanning trees of multi-star related graphs | en |
heal.abstract | In this paper we compute the number of spanning trees of a specific family of graphs using techniques from linear algebra and matrix theory. More specifically, we consider the graphs that result from a complete graph K-n after removing a set of edges that spans a multi-star graph K-m(a(1), a(2),..., a(m)). We derive closed formulas for the number of spanning trees in the cases of double-star (m = 2), triple-star (m = 3), and quadruple-star (m = 4). Moreover for each case we prove that the graphs with the maximum number of spanning trees are exactly those that result when all the ais are equal. (C) 1998 Elsevier Science B.V. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Information Processing Letters | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1998 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: