Derivation of Mindlin's first and second strain gradient elastic theory via simple lattice and continuum models

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Polyzos, D.
Fotiadis, D. I.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Elsevier

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

International Journal of Solids and Structures

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Mindlin, in his celebrated papers of Arch. Rat. Mech. AnaL 16, 51-78, 1964 and Int. J. Solids Struct. 1, 417438, 1965, proposed two enhanced strain gradient elastic theories to describe linear elastic behavior of isotropic materials with micro-structural effects. Since then, many works dealing with strain gradient elastic theories, derived either from lattice models or homogenization approaches, have appeared in the literature. Although elegant, none of them reproduces entirely the equation of motion as well as the classical and non-classical boundary conditions appearing in Mindlin theory, in terms of the considered lattice or continuum unit cell. Furthermore, no lattice or continuum models that confirm the second gradient elastic theory of Mindlin have been reported in the literature. The present work demonstrates two simple one dimensional models that conclude to first and second strain gradient elastic theories being identical to the corresponding ones proposed by Mindlin. The first is based on the standard continualization of the equation of motion taken for a sequence of mass-spring lattices, while the second one exploits average processes valid in continuum mechanics. Furthermore, Mindlin developed his theory by adding new terms in the expressions of potential and kinetic energy and introducing intrinsic micro-structural parameter without however providing explicit expressions that correlate micro-structure with macro-structure. This is accomplished in the present work where in both models the derived internal length scale parameters are correlated to the size of the considered unit cell. (C) 2011 Elsevier Ltd. All rights reserved.

Περιγραφή

Λέξεις-κλειδιά

mindlin's theory of elasticity with microstructure, first and second strain gradient elasticity, lattice and continuum models, micro-structural effects, wave-propagation, dynamic-analysis, linear elasticity, granular material, discrete models, micro-beams, plane-wave, part 1, dispersion, media

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000300743800007

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced