Bayesian feature and model selection for Gaussian mixture models

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Constantinopoulos, C.
Titsias, M. K.
Likas, A.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Ieee Transactions on Pattern Analysis and Machine Intelligence

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

We present a Bayesian method for mixture model training that simultaneously treats the feature selection and the model selection problem. The method is based on the integration of a mixture model formulation that takes into account the saliency of the features and a Bayesian approach to mixture learning that can be used to estimate the number of mixture components. The proposed learning algorithm follows the variational framework and can simultaneously optimize over the number of components, the saliency of the features, and the parameters of the mixture model. Experimental results using high- dimensional artificial and real data illustrate the effectiveness of the method.

Περιγραφή

Λέξεις-κλειδιά

mixture models, feature selection, model selection, bayesian approach, variational training

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced