On the recognition of P-4-comparability graphs

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Nikolopoulos, S. D.
Palios, L.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Graph-Theoretic Concepts in Computer Science

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

We consider the problem of recognizing whether a simple undirected graph is a P-4-comparability graph. This problem has been considered by Hoang and Reed who described an O(n(4))-time algorithm for its solution, where n is the number of vertices of the given graph. Faster algorithms have recently been presented by Raschle and Simon and by Nikolopoulos and Palios; the time complexity of both algorithms is O(n + m(2)), where m is the number of edges of the graph. In this paper, we describe an O(n m)-time, O(n + m)-space algorithm for the recognition of P-4-comparability graphs. The algorithm computes the P(4)s of the input graph G by means of the BFS-trees of the complement of G rooted at each of its vertices, without however explicitly computing the complement of G. Our algorithm is simple, uses simple data structures, and leads to an O(n m)-time algorithm for computing an acyclic P-4-transitive orientation of a P-4-comparability graph.

Περιγραφή

Λέξεις-κλειδιά

perfectly orderable graph, comparability graph, p-4-comparability graph, recognition, p-4-component, p-4-transitive orientation, perfectly orderable graphs, comparability, algorithms

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced