A three-dimensional optical photonic crystal with designed point defects
dc.contributor.author | Qi, M. H. | en |
dc.contributor.author | Lidorikis, E. | en |
dc.contributor.author | Rakich, P. T. | en |
dc.contributor.author | Johnson, S. G. | en |
dc.contributor.author | Joannopoulos, J. D. | en |
dc.contributor.author | Ippen, E. P. | en |
dc.contributor.author | Smith, H. I. | en |
dc.date.accessioned | 2015-11-24T17:37:36Z | |
dc.date.available | 2015-11-24T17:37:36Z | |
dc.identifier.issn | 0028-0836 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/14380 | |
dc.rights | Default Licence | - |
dc.subject | bandgap crystals | en |
dc.subject | fabrication | en |
dc.subject | lithography | en |
dc.subject | wavelengths | en |
dc.subject | scale | en |
dc.subject | gap | en |
dc.title | A three-dimensional optical photonic crystal with designed point defects | en |
heal.abstract | Photonic crystals(1-3) offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing(4). Various techniques for the fabrication of three-dimensional (3D) photonic crystals-such as silicon micromachining(5), wafer fusion bonding(6), holographic lithography(7), self-assembly(8,9), angled-etching(10), micromanipulation(11), glancing-angle deposition(12) and autocloning(13,14)-have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach(15). Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3-1.5 mum). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1038/Nature02575 | - |
heal.identifier.secondary | <Go to ISI>://000221767700033 | - |
heal.journalName | Nature | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2004 | - |
heal.publisher | Nature Publishing Group | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: