Sequence-based protein structure prediction using a reduced state-space hidden Markov model
dc.contributor.author | Lampros, C. | en |
dc.contributor.author | Papaloukas, C. | en |
dc.contributor.author | Exarchos, T. P. | en |
dc.contributor.author | Goletsis, Y. | en |
dc.contributor.author | Fotiadis, D. I. | en |
dc.date.accessioned | 2015-11-24T17:38:10Z | |
dc.date.available | 2015-11-24T17:38:10Z | |
dc.identifier.issn | 0010-4825 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/14453 | |
dc.rights | Default Licence | - |
dc.subject | structure prediction | en |
dc.subject | fold recognition | en |
dc.subject | hidden markov models | en |
dc.subject | protein classification | en |
dc.subject | support vector machines | en |
dc.subject | fold recognition | en |
dc.subject | secondary structure | en |
dc.subject | neural networks | en |
dc.subject | alignment | en |
dc.title | Sequence-based protein structure prediction using a reduced state-space hidden Markov model | en |
heal.abstract | This work describes the use of a hidden Markov model (HMM), with a reduced number of states, which simultaneously learns amino acid sequence and secondary structure for proteins of known three-dimensional structure and it is used for two tasks: protein class prediction and fold recognition. The Protein Data Bank and the annotation of the SCOP database are used for training and evaluation of the proposed HMM for a number of protein classes and folds. Results demonstrate that the reduced state-space HMM performs equivalently, or even better in some cases, on classifying proteins than a HMM trained with the amino acid sequence. The major advantage of the proposed approach is that a small number of states is employed and the training algorithm is of low complexity and thus relatively fast. (C) 2006 Elsevier Ltd. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.compbiomed.2006.10.014 | - |
heal.identifier.secondary | <Go to ISI>://000249489700001 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0010482506001995/1-s2.0-S0010482506001995-main.pdf?_tid=0083e658825388d107524658e307b1b7&acdnat=1339758375_2ae10221c65f7d088804401f69608181 | - |
heal.journalName | Comput Biol Med | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2007 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: