Minimal hypersurfaces with zero Gauss-Kronecker curvature

Loading...
Thumbnail Image

Date

Authors

Hasanis, T.
Savas-Halilaj, A.
Vlachos, T.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Type of the conference item

Journal type

peer reviewed

Educational material type

Conference Name

Journal name

Illinois Journal of Mathematics

Book name

Book series

Book edition

Alternative title / Subtitle

Description

We investigate complete minimal hypersurfaces in the Euclidean space R-4, with Gauss-Kronecker curvature identically zero. We prove that, if f : M-3 -> R-4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature bounded from below, then f(M-3) splits as a Euclidean product L-2 x R, where L-2 is a complete minimal surface in R-3 with Gaussian curvature bounded from below.

Description

Keywords

Subject classification

Citation

Link

<Go to ISI>://000233210500012

Language

en

Publishing department/division

Advisor name

Examining committee

General Description / Additional Comments

Institution and School/Department of submitter

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Table of contents

Sponsor

Bibliographic citation

Name(s) of contributor(s)

Number of Pages

Course details

Endorsement

Review

Supplemented By

Referenced By