Minimal hypersurfaces with zero Gauss-Kronecker curvature
Loading...
Date
Authors
Hasanis, T.
Savas-Halilaj, A.
Vlachos, T.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Type
Type of the conference item
Journal type
peer reviewed
Educational material type
Conference Name
Journal name
Illinois Journal of Mathematics
Book name
Book series
Book edition
Alternative title / Subtitle
Description
We investigate complete minimal hypersurfaces in the Euclidean space R-4, with Gauss-Kronecker curvature identically zero. We prove that, if f : M-3 -> R-4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature bounded from below, then f(M-3) splits as a Euclidean product L-2 x R, where L-2 is a complete minimal surface in R-3 with Gaussian curvature bounded from below.
Description
Keywords
Subject classification
Citation
Link
<Go to ISI>://000233210500012
Language
en
Publishing department/division
Advisor name
Examining committee
General Description / Additional Comments
Institution and School/Department of submitter
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών