Minimal hypersurfaces with zero Gauss-Kronecker curvature

dc.contributor.authorHasanis, T.en
dc.contributor.authorSavas-Halilaj, A.en
dc.contributor.authorVlachos, T.en
dc.date.accessioned2015-11-24T17:25:22Z
dc.date.available2015-11-24T17:25:22Z
dc.identifier.issn0019-2082-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13031
dc.rightsDefault Licence-
dc.titleMinimal hypersurfaces with zero Gauss-Kronecker curvatureen
heal.abstractWe investigate complete minimal hypersurfaces in the Euclidean space R-4, with Gauss-Kronecker curvature identically zero. We prove that, if f : M-3 -> R-4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature bounded from below, then f(M-3) splits as a Euclidean product L-2 x R, where L-2 is a complete minimal surface in R-3 with Gaussian curvature bounded from below.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000233210500012-
heal.journalNameIllinois Journal of Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2005-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: