Towards "Ideal Multistart". A stochastic approach for locating the minima of a continuous function inside a bounded domain
dc.contributor.author | Voglis, C. | en |
dc.contributor.author | Lagaris, I. E. | en |
dc.date.accessioned | 2015-11-24T17:02:15Z | |
dc.date.available | 2015-11-24T17:02:15Z | |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11030 | |
dc.rights | Default Licence | - |
dc.subject | global optimization | en |
dc.subject | multistart | en |
dc.subject | stohastic approach | en |
dc.subject | local search | en |
dc.subject | adaptive probability | en |
dc.subject | global optimization methods | en |
dc.subject | stopping rules | en |
dc.title | Towards "Ideal Multistart". A stochastic approach for locating the minima of a continuous function inside a bounded domain | en |
heal.abstract | A stochastic global optimization method based on Multistart is presented. In this, the local search is conditionally applied with a probability that takes in account the topology of the objective function at the detail offered by the current status of exploration. As a result, the number of unnecessary local searches is drastically limited, yielding an efficient method. Results of its application on a set of common test functions are reported, along with a performance comparison against other established methods of similar nature. (C) 2009 Elsevier Inc. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.amc.2009.03.012 | - |
heal.journalName | Applied Mathematics and Computation | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2009 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: