A bayesian reinforcement learning framework using relevant vector machines
Φόρτωση...
Ημερομηνία
Συγγραφείς
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
AAAI
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this work we present an advanced Bayesian formulation to the task of control learning that employs the Relevance Vector Machines (RVM) generative model for value function evaluation. The key aspect of the proposed method is the design of the discount return as a generalized linear model that constitutes a wellknown probabilistic approach. This allows to augment the model with advantageous sparse priors provided by the RVM s regression framework. We have also taken into account the significant issue of selecting the proper parameters of the kernel design matrix. Experiments have shown that our method produces improved performance in both simulated and real test environments.
Περιγραφή
Λέξεις-κλειδιά
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής
