A bayesian reinforcement learning framework using relevant vector machines
Abstract
Type
Type of the conference item
Journal type
peer reviewed
Educational material type
Conference Name
Journal name
AAAI
Book name
Book series
Book edition
Alternative title / Subtitle
Description
In this work we present an advanced Bayesian formulation to the task of control learning that employs the Relevance Vector Machines (RVM) generative model for value function evaluation. The key aspect of the proposed method is the design of the discount return as a generalized linear model that constitutes a wellknown probabilistic approach. This allows to augment the model with advantageous sparse priors provided by the RVM s regression framework. We have also taken into account the significant issue of selecting the proper parameters of the kernel design matrix. Experiments have shown that our method produces improved performance in both simulated and real test environments.
Description
Keywords
Subject classification
Citation
Link
Language
en
Publishing department/division
Advisor name
Examining committee
General Description / Additional Comments
Institution and School/Department of submitter
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής