A bayesian reinforcement learning framework using relevant vector machines

dc.contributor.authorBlekas, K.en
dc.contributor.authorTziortziotis, N.en
dc.date.accessioned2015-11-24T17:02:29Z
dc.date.available2015-11-24T17:02:29Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11059
dc.rightsDefault Licence-
dc.titleA bayesian reinforcement learning framework using relevant vector machinesen
heal.abstractIn this work we present an advanced Bayesian formulation to the task of control learning that employs the Relevance Vector Machines (RVM) generative model for value function evaluation. The key aspect of the proposed method is the design of the discount return as a generalized linear model that constitutes a wellknown probabilistic approach. This allows to augment the model with advantageous sparse priors provided by the RVM s regression framework. We have also taken into account the significant issue of selecting the proper parameters of the kernel design matrix. Experiments have shown that our method produces improved performance in both simulated and real test environments.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameAAAIen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2011-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: