Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras
dc.contributor.author | Beligiannis, A. | en |
dc.date.accessioned | 2015-11-24T17:22:30Z | |
dc.date.available | 2015-11-24T17:22:30Z | |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12624 | |
dc.rights | Default Licence | - |
dc.subject | artin algebras | en |
dc.subject | cohen-macaulay modules | en |
dc.subject | gorenstein rings | en |
dc.subject | stable categories | en |
dc.subject | covariantly | en |
dc.subject | contravariantly finite and definable subcategories | en |
dc.subject | torsion pairs and cotorsion pairs | en |
dc.subject | triangulated categories | en |
dc.subject | compact objects | en |
dc.subject | telescope conjecture | en |
dc.subject | gorenstein symmetry conjecture | en |
dc.subject | contravariantly finite subcategories | en |
dc.subject | smashing subcategories | en |
dc.subject | brown representability | en |
dc.subject | abelian categories | en |
dc.subject | stable equivalence | en |
dc.subject | split-sequences | en |
dc.subject | artin algebras | en |
dc.subject | localization | en |
dc.subject | spectra | en |
dc.subject | conjecture | en |
dc.title | Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras | en |
heal.abstract | We use torsion pairs in stable categories and cotorsion pairs in modules categories to study, in General infinitely generated, Cohen-Macaulay modules and (a generalization of) modules of finite projective or injective dimension over an Artin algebra. We concentrate our investigation to the study of virtually Gorenstein algebras which provide a common generalization of Gorenstein algebras and aluebras of finite representation or Cohen-Macaulay type. This class of algebras on the one hand has rich homological structure and satisfies several representation/torsion theoretic finiteness conditions, and on the other hand it is closed under various operations, for instance derived equivalences and stable equivalences of Morita type. In addition virtual Gorensteinness provides a useful tool for the study of the Gorenstein Symmetry Conjecture and modified versions of the Telescope Conjecture for module or stable categories. (c) 2005 Elsevier Inc. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.jalgebra.2005.02.022 | - |
heal.identifier.secondary | <Go to ISI>://000229227400006 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0021869305001390/1-s2.0-S0021869305001390-main.pdf?_tid=fd57effe84f9df662bc3afcd84eb6c88&acdnat=1338976159_f6940568cfb4105a902a7dafac18aed4 | - |
heal.journalName | Journal of Algebra | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2005 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: