On simple A-multigraded minimal resolutions
dc.contributor.author | Thoma, A. | en |
dc.contributor.author | Charalambous, H. | en |
dc.date.accessioned | 2015-11-24T17:26:22Z | |
dc.date.available | 2015-11-24T17:26:22Z | |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13192 | |
dc.rights | Default Licence | - |
dc.subject | Resolutions, lattice ideal, syzygies, indispensable syzygies, Scarf | en |
dc.subject | complex. | en |
dc.title | On simple A-multigraded minimal resolutions | en |
heal.abstract | Let A be a semigroup whose only invertible element is 0. For an A-homogeneous ideal we discuss the notions of simple i-syzygies and simple minimal free resolutions of R/I. When I is a lattice ideal, the simple 0-syzygies of R/I are the binomials in I. We show that for an appropriate choice of bases every A-homogeneous minimal free resolution of R/I is simple. We introduce the gcd-complex gcd(b) for a degree b 2 A. We show that the homology of gcd(b) determines the i-Betti numbers of degree b. We discuss the notion of an indispensable complex of R/I. We show that the Koszul complex of a complete intersection lattice ideal I is the indispensable resolution of R/I when the A-degrees of the elements of the generating R-sequence are incomparable. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Commutative Algebra | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2009 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: