Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate
Φόρτωση...
Ημερομηνία
Συγγραφείς
Noutsos, D.
Capizzano, S. S.
Vassalos, P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Elsevier
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Theoretical Computer Science
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In the last decades several matrix algebra optimal and superlinear preconditioners (those assuring a strong clustering at the unity) have been proposed for the solution of polynomially ill-conditioned Toeplitz linear systems. The corresponding generalizations for multilevel structures are neither optimal nor superlinear (see e.g. Contemp. Math. 281 (2001) 193). Concerning the notion of superlinearity, it has been recently shown that the proper clustering, cannot be obtained in general (see Linear Algebra Appl. 343-344 (2002) 303-1 SIAM J. Matrix Anal. Appl. 22(l) (1999) 431; Math. Comput. 72 (2003) 1305). In this paper, by exploiting a proof technique previously proposed by the authors (see Contemp. Math. 323 (2003) 313), we prove that the spectral equivalence and the essential spectral equivalence (up to a constant number of diverging eigenvalues) are impossible too. In conclusion, optimal matrix algebra preconditioners in the multilevel setting simply do not exist in general and therefore the search for optimal iterative solvers should be oriented to different directions with special attention to multilevel/multigrid techniques. (C) 2004 Elsevier B.V. All rights reserved.
Περιγραφή
Λέξεις-κλειδιά
preconditioning and multigrid, finite difference and toeplitz matrices, matrix algebras, (essential) spectral equivalence, nonnegative generating-functions, sequences
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000221353000012
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών