Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate

dc.contributor.authorNoutsos, D.en
dc.contributor.authorCapizzano, S. S.en
dc.contributor.authorVassalos, P.en
dc.date.accessioned2015-11-24T17:25:13Z
dc.date.available2015-11-24T17:25:13Z
dc.identifier.issn0304-3975-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13008
dc.rightsDefault Licence-
dc.subjectpreconditioning and multigriden
dc.subjectfinite difference and toeplitz matricesen
dc.subjectmatrix algebrasen
dc.subject(essential) spectral equivalenceen
dc.subjectnonnegative generating-functionsen
dc.subjectsequencesen
dc.titleMatrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rateen
heal.abstractIn the last decades several matrix algebra optimal and superlinear preconditioners (those assuring a strong clustering at the unity) have been proposed for the solution of polynomially ill-conditioned Toeplitz linear systems. The corresponding generalizations for multilevel structures are neither optimal nor superlinear (see e.g. Contemp. Math. 281 (2001) 193). Concerning the notion of superlinearity, it has been recently shown that the proper clustering, cannot be obtained in general (see Linear Algebra Appl. 343-344 (2002) 303-1 SIAM J. Matrix Anal. Appl. 22(l) (1999) 431; Math. Comput. 72 (2003) 1305). In this paper, by exploiting a proof technique previously proposed by the authors (see Contemp. Math. 323 (2003) 313), we prove that the spectral equivalence and the essential spectral equivalence (up to a constant number of diverging eigenvalues) are impossible too. In conclusion, optimal matrix algebra preconditioners in the multilevel setting simply do not exist in general and therefore the search for optimal iterative solvers should be oriented to different directions with special attention to multilevel/multigrid techniques. (C) 2004 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.tcs.2004.01.007-
heal.identifier.secondary<Go to ISI>://000221353000012-
heal.journalNameTheoretical Computer Scienceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: