A strong generic ergodicity property of unitary and self-adjoint operators
Φόρτωση...
Ημερομηνία
Συγγραφείς
Sofronidis, N. E.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Cambridge University Press
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ergod. Th. & Dynam. Sys.
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Consider the conjugacy action of the unitary group of an infinite-dimensional separable Hilbert space on the unitary operators. A strong generic ergodicity property of this action is established, by showing that any conjugacy invariants assigned in a definable way to unitary operators, and taking as values countable structures up to isomorphism, generically trivialize. Similar results are proved for conjugacy of self-adjoint operators and for measure equivalence. The proofs make use of the theory of turbulence for continuous actions of Polish groups, developed by Hjorth. These methods are also used to give a new solution to a problem of Mauldin in measure theory, by showing that any analytic set of pairwise orthogonal measures on the Cantor space is orthogonal to a product measure.
Περιγραφή
Λέξεις-κλειδιά
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών