A strong generic ergodicity property of unitary and self-adjoint operators
dc.contributor.author | Sofronidis, N. E. | en |
dc.date.accessioned | 2015-11-24T17:05:13Z | |
dc.date.available | 2015-11-24T17:05:13Z | |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11284 | |
dc.rights | Default Licence | - |
dc.title | A strong generic ergodicity property of unitary and self-adjoint operators | en |
heal.abstract | Consider the conjugacy action of the unitary group of an infinite-dimensional separable Hilbert space on the unitary operators. A strong generic ergodicity property of this action is established, by showing that any conjugacy invariants assigned in a definable way to unitary operators, and taking as values countable structures up to isomorphism, generically trivialize. Similar results are proved for conjugacy of self-adjoint operators and for measure equivalence. The proofs make use of the theory of turbulence for continuous actions of Polish groups, developed by Hjorth. These methods are also used to give a new solution to a problem of Mauldin in measure theory, by showing that any analytic set of pairwise orthogonal measures on the Cantor space is orthogonal to a product measure. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Ergod. Th. & Dynam. Sys. | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2001 | - |
heal.publisher | Cambridge University Press | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: