Automated method for lumen and media-adventitia border detection in a sequence of IVUS frames
Φόρτωση...
Ημερομηνία
Συγγραφείς
Plissiti, M. E.
Fotiadis, D. I.
Michalis, L. K.
Bozios, G.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ieee Transactions on Information Technology in Biomedicine
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper, we present a method for the automated detection of lumen and media-adventitia border in sequential intravascular ultrasound (IVUS) frames. The method is based on the use of deformable models. The energy function is appropriately modified and minimized using a Hopfield neural network. Proper modifications in the definition of the bias of the neurons have been introduced to incorporate image characteristics. A simulated annealing scheme is included to ensure convergence at a global minimum. The method overcomes distortions in the expected image pattern, due to the presence of calcium, employing a specialized structure of the neural network and boundary correction schemas which are based on a priori knowledge about the vessel geometry. The proposed method is evaluated using sequences of IVUS frames from 18 arterial segments, some of them indicating calcified regions. The obtained results demonstrate that our method is statistically accurate, reproducible, and capable to identify the regions of interest in sequences of IVUS frames.
Περιγραφή
Λέξεις-κλειδιά
deformable models, image segmentation, intravascular ultrasound (ivus), intravascular ultrasound images, quantification, segmentation, reproducibility
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000221871400008
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικών