Automated method for lumen and media-adventitia border detection in a sequence of IVUS frames

dc.contributor.authorPlissiti, M. E.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorMichalis, L. K.en
dc.contributor.authorBozios, G.en
dc.date.accessioned2015-11-24T17:32:17Z
dc.date.available2015-11-24T17:32:17Z
dc.identifier.issn1089-7771-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13702
dc.rightsDefault Licence-
dc.subjectdeformable modelsen
dc.subjectimage segmentationen
dc.subjectintravascular ultrasound (ivus)en
dc.subjectintravascular ultrasound imagesen
dc.subjectquantificationen
dc.subjectsegmentationen
dc.subjectreproducibilityen
dc.titleAutomated method for lumen and media-adventitia border detection in a sequence of IVUS framesen
heal.abstractIn this paper, we present a method for the automated detection of lumen and media-adventitia border in sequential intravascular ultrasound (IVUS) frames. The method is based on the use of deformable models. The energy function is appropriately modified and minimized using a Hopfield neural network. Proper modifications in the definition of the bias of the neurons have been introduced to incorporate image characteristics. A simulated annealing scheme is included to ensure convergence at a global minimum. The method overcomes distortions in the expected image pattern, due to the presence of calcium, employing a specialized structure of the neural network and boundary correction schemas which are based on a priori knowledge about the vessel geometry. The proposed method is evaluated using sequences of IVUS frames from 18 arterial segments, some of them indicating calcified regions. The obtained results demonstrate that our method is statistically accurate, reproducible, and capable to identify the regions of interest in sequences of IVUS frames.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Titb.2004.828889-
heal.identifier.secondary<Go to ISI>://000221871400008-
heal.journalNameIeee Transactions on Information Technology in Biomedicineen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: