A divide-and-conquer method for multi-net classifiers
Φόρτωση...
Ημερομηνία
Συγγραφείς
Frosyniotis, D.
Stafylopatis, A.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Pattern Analysis and Applications
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Several researchers have shown that substantial improvements can be achieved in difficult pattern recognition problems by combining the outputs of multiple neural networks. In this work, we present and test a pattern classification multi-net system based on both supervised and unsupervised learning. Following the 'divide-and-conquer' framework, the input space is partitioned into overlapping subspaces and neural networks are subsequently used to solve the respective classification subtasks. Finally, the outputs of individual classifiers are appropriately combined to obtain the final classification decision. Two clustering methods have been applied for input space partitioning and two schemes have been considered for combining the outputs of the multiple classifiers. Experiments on well-known data sets indicate that the multi-net classification system exhibits promising performance compared with the case of single network training, both in terms of error rates and in terms of training speed (especially if the training of the classifiers is done in parallel).
Περιγραφή
Λέξεις-κλειδιά
classifier combination, classifier fusion, clustering, divide-and-conquer, multiple classifier systems
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής