A divide-and-conquer method for multi-net classifiers

dc.contributor.authorFrosyniotis, D.en
dc.contributor.authorStafylopatis, A.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:00:22Z
dc.date.available2015-11-24T17:00:22Z
dc.identifier.issn1433-7541-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10755
dc.rightsDefault Licence-
dc.subjectclassifier combinationen
dc.subjectclassifier fusionen
dc.subjectclusteringen
dc.subjectdivide-and-conqueren
dc.subjectmultiple classifier systemsen
dc.titleA divide-and-conquer method for multi-net classifiersen
heal.abstractSeveral researchers have shown that substantial improvements can be achieved in difficult pattern recognition problems by combining the outputs of multiple neural networks. In this work, we present and test a pattern classification multi-net system based on both supervised and unsupervised learning. Following the 'divide-and-conquer' framework, the input space is partitioned into overlapping subspaces and neural networks are subsequently used to solve the respective classification subtasks. Finally, the outputs of individual classifiers are appropriately combined to obtain the final classification decision. Two clustering methods have been applied for input space partitioning and two schemes have been considered for combining the outputs of the multiple classifiers. Experiments on well-known data sets indicate that the multi-net classification system exhibits promising performance compared with the case of single network training, both in terms of error rates and in terms of training speed (especially if the training of the classifiers is done in parallel).en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s10044-002-0174-6-
heal.journalNamePattern Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2003-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: