L-P-solutions of singular integro-differential equations

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Elsevier

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Journal of Mathematical Analysis and Applications

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

We study a variety of scalar integro-differential equations with singular kernels including linear, nonlinear, and resolvent equations. The first result involves a type of existence theorem which uses a fixed point mapping defined by the integro-differential equation itself and produces a unique solution with a continuous derivative in a very simple way. We then construct a Liapunov functional yielding qualitative properties of solutions. The work answers questions raised by Volterra in 1928, by Levin in 1963, and by Grimmer and Seifert in 1975. Previous results had produced bounded solutions from bounded perturbations. Our results mainly concern integrable solutions from integrable perturbations. (C) 2011 Elsevier Inc. All rights reserved.

Περιγραφή

Λέξεις-κλειδιά

integro-differential equations, liapunov functionals, singular kernels, l-p solutions

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000295563500029
http://ac.els-cdn.com/S0022247X11007888/1-s2.0-S0022247X11007888-main.pdf?_tid=8cf47932-cf38-11e2-9104-00000aab0f02&acdnat=1370585436_9f63bb49ebcd62608659782cb4fe8521

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced