L-P-solutions of singular integro-differential equations

dc.contributor.authorBurton, T. A.en
dc.contributor.authorPurnaras, I. K.en
dc.date.accessioned2015-11-24T17:25:06Z
dc.date.available2015-11-24T17:25:06Z
dc.identifier.issn0022-247X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12991
dc.rightsDefault Licence-
dc.subjectintegro-differential equationsen
dc.subjectliapunov functionalsen
dc.subjectsingular kernelsen
dc.subjectl-p solutionsen
dc.titleL-P-solutions of singular integro-differential equationsen
heal.abstractWe study a variety of scalar integro-differential equations with singular kernels including linear, nonlinear, and resolvent equations. The first result involves a type of existence theorem which uses a fixed point mapping defined by the integro-differential equation itself and produces a unique solution with a continuous derivative in a very simple way. We then construct a Liapunov functional yielding qualitative properties of solutions. The work answers questions raised by Volterra in 1928, by Levin in 1963, and by Grimmer and Seifert in 1975. Previous results had produced bounded solutions from bounded perturbations. Our results mainly concern integrable solutions from integrable perturbations. (C) 2011 Elsevier Inc. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.jmaa.2011.08.041-
heal.identifier.secondary<Go to ISI>://000295563500029-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0022247X11007888/1-s2.0-S0022247X11007888-main.pdf?_tid=8cf47932-cf38-11e2-9104-00000aab0f02&acdnat=1370585436_9f63bb49ebcd62608659782cb4fe8521-
heal.journalNameJournal of Mathematical Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2012-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: