Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis

dc.contributor.authorTzallas, A. T.en
dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:34:06Z
dc.date.available2015-11-24T17:34:06Z
dc.identifier.issn1089-7771-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13929
dc.rightsDefault Licence-
dc.subjectartificial neural networks (anns)en
dc.subjecteegen
dc.subjectepilepsyen
dc.subjectseizure detectionen
dc.subjecttime-frequency (t-f) analysisen
dc.subjectartificial neural-networken
dc.subjectsupport vector machinesen
dc.subjectspike detectionen
dc.subjectsignals classificationen
dc.subjectautomatic detectionen
dc.subjectwavelet analysisen
dc.subjectalgorithmsen
dc.subjectdiagnosisen
dc.subjectfeaturesen
dc.subjectlongen
dc.titleEpileptic Seizure Detection in EEGs Using Time-Frequency Analysisen
heal.abstractThe detection of recorded epileptic seizure activity in EEG segments is crucial for the localization and classification of epileptic seizures. However, since seizure evolution is typically a dynamic and nonstationary process and the signals are composed of multiple frequencies, visual and conventional frequency-based methods have limited application. In this paper, we demonstrate the suitability of the time-frequency (t-f) analysis to classify EEG segments for epileptic seizures, and we compare several methods for t-f analysis of EEGs. Short-time Fourier transform and several t-f distributions are used to calculate the power spectrum density (PSD) of each segment. The analysis is performed in three stages: 1) t-f analysis and calculation of the PSD of each EEG segment; 2) feature extraction, measuring the signal segment fractional energy on specific t-f windows; and 3) classification of the EEG segment (existence of epileptic seizure or not), using artificial neural networks. The methods are evaluated using three classification problems obtained from a benchmark EEG dataset, and qualitative and quantitative results are presented.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Titb.2009.2017939-
heal.identifier.secondary<Go to ISI>://000269518900005-
heal.journalNameIeee Transactions on Information Technology in Biomedicineen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: