Mining sequential patterns for protein fold recognition
Φόρτωση...
Ημερομηνία
Συγγραφείς
Exarchos, T. P.
Papaloukas, C.
Lampros, C.
Fotiadis, D. I.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
J Biomed Inform
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered. (C) 2007 Elsevier Inc. All rights reserved.
Περιγραφή
Λέξεις-κλειδιά
data mining, sequential patterns, fold recognition, hidden markov-models, support vector machines, structure prediction, structural class, neural-networks, amino-acid, classification, sequences, discovery, accuracy
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000255260200014
http://ac.els-cdn.com/S1532046407000433/1-s2.0-S1532046407000433-main.pdf?_tid=0979c2e79a9109913e1af7ffad50b37e&acdnat=1335783316_33c7615fadb8c0b0df87fb1602bc81c0
http://ac.els-cdn.com/S1532046407000433/1-s2.0-S1532046407000433-main.pdf?_tid=0979c2e79a9109913e1af7ffad50b37e&acdnat=1335783316_33c7615fadb8c0b0df87fb1602bc81c0
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών