Mining sequential patterns for protein fold recognition

dc.contributor.authorExarchos, T. P.en
dc.contributor.authorPapaloukas, C.en
dc.contributor.authorLampros, C.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T16:33:57Z
dc.date.available2015-11-24T16:33:57Z
dc.identifier.issn1532-0464-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/7736
dc.rightsDefault Licence-
dc.subjectdata miningen
dc.subjectsequential patternsen
dc.subjectfold recognitionen
dc.subjecthidden markov-modelsen
dc.subjectsupport vector machinesen
dc.subjectstructure predictionen
dc.subjectstructural classen
dc.subjectneural-networksen
dc.subjectamino-aciden
dc.subjectclassificationen
dc.subjectsequencesen
dc.subjectdiscoveryen
dc.subjectaccuracyen
dc.titleMining sequential patterns for protein fold recognitionen
heal.abstractProtein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered. (C) 2007 Elsevier Inc. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.jbi.2007.05.004-
heal.identifier.secondary<Go to ISI>://000255260200014-
heal.identifier.secondaryhttp://ac.els-cdn.com/S1532046407000433/1-s2.0-S1532046407000433-main.pdf?_tid=0979c2e79a9109913e1af7ffad50b37e&acdnat=1335783316_33c7615fadb8c0b0df87fb1602bc81c0-
heal.journalNameJ Biomed Informen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: