Purity and almost split morphisms in abstract homotopy categories: A unified approach via Brown representability
dc.contributor.author | Beligiannis, A. | en |
dc.date.accessioned | 2015-11-24T17:27:43Z | |
dc.date.available | 2015-11-24T17:27:43Z | |
dc.identifier.issn | 1386-923X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13436 | |
dc.rights | Default Licence | - |
dc.subject | purity | en |
dc.subject | almost split morphisms | en |
dc.subject | brown representability | en |
dc.subject | phantom maps | en |
dc.subject | abstract homotopy categories | en |
dc.subject | pure-injectives | en |
dc.subject | flat functors | en |
dc.subject | approximations | en |
dc.subject | artin-algebras | en |
dc.subject | modules | en |
dc.subject | subcategories | en |
dc.subject | homology | en |
dc.subject | duality | en |
dc.subject | theorem | en |
dc.subject | rings | en |
dc.title | Purity and almost split morphisms in abstract homotopy categories: A unified approach via Brown representability | en |
heal.abstract | Our aim in this paper is to develop a theory of purity and to prove in a unified conceptual way the existence of almost split morphisms, almost split sequences and almost split triangles in abstract homotopy categories, a rather omnipresent class of categories of interest in representation theory. Our main tool for doing this is the classical Brown representability theorem. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.secondary | <Go to ISI>://000178532300003 | - |
heal.journalName | Algebras and Representation Theory | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2002 | - |
heal.publisher | Springer Verlag (Germany) | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: