Improving fuzzy cognitive maps learning through memetic particle swarm optimization
Φόρτωση...
Ημερομηνία
Συγγραφείς
Petalas, Y. G.
Parsopoulos, K. E.
Vrahatis, M. N.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Soft Computing
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Fuzzy cognitive maps constitute a neuro-fuzzy modeling methodology that can simulate complex systems accurately. Although their configuration is defined by experts, learning schemes based on evolutionary and swarm intelligence algorithms have been employed for improving their efficiency and effectiveness. This paper comprises an extensive study of the recently proposed swarm intelligence memetic algorithm that combines particle swarm optimization with both deterministic and stochastic local search schemes, for fuzzy cognitive maps learning tasks. Also, a new technique for the adaptation of the memetic schemes, with respect to the available number of function evaluations per application of the local search, is proposed. The memetic learning schemes are applied on four real-life problems and compared with established learning methods based on the standard particle swarm optimization, differential evolution, and genetic algorithms, justifying their superiority.
Περιγραφή
Λέξεις-κλειδιά
fuzzy cognitive maps, memetic algorithms, particle swarm optimization, local search, machine learning, supervisory control-systems, global optimization, parameter selection, genetic algorithm, convergence, computation, network, search, design
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής