Improving fuzzy cognitive maps learning through memetic particle swarm optimization

dc.contributor.authorPetalas, Y. G.en
dc.contributor.authorParsopoulos, K. E.en
dc.contributor.authorVrahatis, M. N.en
dc.date.accessioned2015-11-24T17:02:10Z
dc.date.available2015-11-24T17:02:10Z
dc.identifier.issn1432-7643-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11020
dc.rightsDefault Licence-
dc.subjectfuzzy cognitive mapsen
dc.subjectmemetic algorithmsen
dc.subjectparticle swarm optimizationen
dc.subjectlocal searchen
dc.subjectmachine learningen
dc.subjectsupervisory control-systemsen
dc.subjectglobal optimizationen
dc.subjectparameter selectionen
dc.subjectgenetic algorithmen
dc.subjectconvergenceen
dc.subjectcomputationen
dc.subjectnetworken
dc.subjectsearchen
dc.subjectdesignen
dc.titleImproving fuzzy cognitive maps learning through memetic particle swarm optimizationen
heal.abstractFuzzy cognitive maps constitute a neuro-fuzzy modeling methodology that can simulate complex systems accurately. Although their configuration is defined by experts, learning schemes based on evolutionary and swarm intelligence algorithms have been employed for improving their efficiency and effectiveness. This paper comprises an extensive study of the recently proposed swarm intelligence memetic algorithm that combines particle swarm optimization with both deterministic and stochastic local search schemes, for fuzzy cognitive maps learning tasks. Also, a new technique for the adaptation of the memetic schemes, with respect to the available number of function evaluations per application of the local search, is proposed. The memetic learning schemes are applied on four real-life problems and compared with established learning methods based on the standard particle swarm optimization, differential evolution, and genetic algorithms, justifying their superiority.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00500-008-0311-2-
heal.journalNameSoft Computingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: