Measuring stochastic dependence using phi-divergence
dc.contributor.author | Micheas, A. C. | en |
dc.contributor.author | Zografos, K. | en |
dc.date.accessioned | 2015-11-24T17:25:15Z | |
dc.date.available | 2015-11-24T17:25:15Z | |
dc.identifier.issn | 0047-259X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13014 | |
dc.rights | Default Licence | - |
dc.subject | elliptical family of distributions | en |
dc.subject | monte carlo methods | en |
dc.subject | multivariate dependence | en |
dc.subject | renyi's axioms | en |
dc.subject | phi-divergence measures of dependence | en |
dc.subject | multivariate dependence | en |
dc.subject | fisher information | en |
dc.subject | random-variables | en |
dc.subject | decision rules | en |
dc.subject | distance | en |
dc.subject | distributions | en |
dc.subject | independence | en |
dc.subject | tests | en |
dc.subject | fit | en |
dc.title | Measuring stochastic dependence using phi-divergence | en |
heal.abstract | The problem of bivatiate (multivariate) dependence has enjoyed the attention of researchers for over a century, since independence in the data is often a desired property. There exists a vast literature on measures of dependence, based mostly on the distance of the joint distribution of the data and the product of the marginal distributions, where the latter distribution assumes the property of independence. In this article, we explore measures of multivariate dependence based on the phi-divergence of the joint distribution of a random vector and the distribution that corresponds to independence of the components of the vector, the product of the marginals. Properties of these measures are also investigated and we employ and extend the axiomatic framework of Renyi [On measures of dependence, Acta Math. Acad. Sci. Hungar. 10 (1959) 441-451], in order to assert the importance of phi-divergence measures of dependence for a general convex function phi as well as special cases of phi. Moreover, we obtain point estimates as well as interval estimators when an elliptical distribution is used to model the data, based on phi-divergence via Monte Carlo methods. (C) 2005 Elsevier Inc. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.jmva.2005.04.007 | - |
heal.identifier.secondary | <Go to ISI>://000235696400012 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0047259X05000515/1-s2.0-S0047259X05000515-main.pdf?_tid=31c1e9b8-c6b0-11e2-acc2-00000aacb35f&acdnat=1369647262_c4239eab4330fcedcf8a1bf4b5f1366d | - |
heal.journalName | Journal of Multivariate Analysis | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2006 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: